If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+22y+29=0
a = 1; b = 22; c = +29;
Δ = b2-4ac
Δ = 222-4·1·29
Δ = 368
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{368}=\sqrt{16*23}=\sqrt{16}*\sqrt{23}=4\sqrt{23}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-4\sqrt{23}}{2*1}=\frac{-22-4\sqrt{23}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+4\sqrt{23}}{2*1}=\frac{-22+4\sqrt{23}}{2} $
| n+-47=56 | | -5x-10=-2-x | | 6x+15-x=2x+4 | | 85=5m | | 7(m+7=35 | | 18=10+2g | | w12=12 | | 5x+17=3x-15+2x | | w12=14 | | 23=y-15 | | 78x=90 | | -8(r+7)-r=-128 | | 3(y+2000)=3000 | | 90=128/x | | x^2=2.25*4x | | 16/6=x/1.2 | | 3v+8-9v=-70 | | x-1+6x-11=180 | | x/2-11=-65 | | 5+4x+53=90 | | 7(2e-1)-3=6+6e7 | | 6x+5-6x=15 | | 2(3x-4)=-5(x-2)+4 | | 46=w/3 | | (5x+3)+(3x)= | | 43=x+9 | | 10x7=17 | | 27+6x=8.25+x | | 6w+4+8(w+2)=90 | | 10u-u=35 | | 52=x+19 | | 90-h=45 |